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Abstract

Graph-based architectures have been popularized in recent years because of
the surge in graph-based data. Current architectures do not perform well on
graph data with large amounts of layers, referred to as long-range interaction.
They face issues like oversmoothing and oversquashing, which leads to model
learning only short-ranged signals from training data and not generalizing
well on test data. A model needs to generalize to long-range interactions so
that we can use information from neighboring nodes to classify a given node.
In this paper, we will conduct a comparative analysis of baseline Graph Neu-
ral Networks (GNNs) such as Graph Convolutional Networks (GCN), Graph
Isomorphism Networks (GIN), and Graph Attention Networks (GAT) against
the transformer-basedmodel GraphGPS.Wewill evaluate thesemodels across
Cora, IMDB, and Enzymes datasets; and PascalVOC-SP dataset from the Long
Range Graph Benchmark. Our research aims to analyze the accuracy of these
models to provide insights into their performance ability and discuss whether
they overcome the oversmoothing and oversquashing issues.

Code: https://github.com/prabina-p/GNN-Long-Range-Interactions
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1 Introduction

1.1 Ubiquity of Graph Data: Real-World Context
Many real-world data are commonly formatted in graph format. For example, many social
apps, like Instagram, have a social network where nodes are people, edges are relation-
ships (mother, friend, co-worker, etc.), and attributes are information pertinent to the node
(height, age, etc.). In the current age where graph data is ubiquitous, there is a growing
concern that current graph-based architectures fail to capture the complexity present in
those data.

1.2 Complexity and Challenges in Graph Structures
This distinction in performance becomes more apparent when we face extensive and intri-
cate layers of information in these graphs. Our graph data may include diverse attributes
such as one layer for user characteristics, another for hobbies, and another for geographical
location, among others. These multi-layered structures introduce the notion of long-range
interaction, where preserving these connections between layers becomes an important goal,
so we can leverage it for machine-learning tasks like node and graph classification.
Given these intricacies, current state-of-the-art architectures face significant challenges
with graph data that has long-range interactions. Issues such as oversmoothing and over-
squashing arise, leading to ineffective learning.

1.2.1 Oversmoothing and its Implications

Oversmoothing (Oono and Suzuki 2020) occurs when the message-passing formalism (i.e.
framework used to analyze interactions between nodes), softens out the distances between
neighboring nodes excessively. Consequently, node embeddings become too similar, which
leads to hindering classification in later phases. Even nodes that do not experience over-
smoothing in the first few layers may suffer from this as they traverse deeper into the layers,
impacting the model’s performance.

1.2.2 Oversquashing and its Implications

Similarly, oversquashing (Alon and Yahav 2021) occurs when nodes receive massive, ex-
ponential amounts of data, causing them to forget the information from distant nodes.
This phenomenon is visualized in Figure 1 (Alon and Yahav 2021), where GNN bottleneck
occurs due to the exponentially-growing information overload. Oversquashing becomes
more prevalent in long-range interactions, causing crucial information from far away to
get “squashed” or slowly forgotten. Consequently, the model leads to learning only short-
ranged signals from training data and not generalizing well on test data.
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Figure 1: Oversquashing in GNNs (Alon and Yahav 2021)

1.3 Exploration of Traditional Graph Neural Networks (GNNs)
In light of these challenges, our research will investigate the performance of traditional
graph neural networks (GNNs) - Graph Convolutional Networks (GCN), Graph Isomorphism
Networks (GIN), and Graph Attention Networks (GAT).

1.3.1 GCN, GIN, GAT: Foundation and Approaches

GCN (Kipf and Welling 2017) uses the message-passing formalism described earlier, where
it updates nodes based on the aggregation of its neighboring nodes. GATs (Veličković et al.
2018), on the other hand, aim at addressing oversquashing by leveraging masked self-
attentional layers, allowing for adaptive weighting of neighboring nodes. This strategy has
shown promise in improving performance on long-range interactions as it receives selective
information from neighboring nodes. Additionally, GINs (Xu et al. 2019) add non-linearity
after iteratively aggregating node features. These three GNN models (GCN, GAT, and GIN)
serve as baseline models since they set a foundational approach for learning graph repre-
sentations.

1.4 Introduction to GraphGPS: Transformer-based Model
In this study, we will compare the effectiveness of these traditional GNNs alongside a
transformer-based model, GraphGPS. GraphGPS (Rampášek et al. 2022) presents a novel
approach by leveraging self-attention mechanisms and transformer architectures to capture
long-range interactions. We will assess GraphGPS’ capabilities in contrast to traditional
GNNs for machine learning tasks.

1.5 Machine Learning Tasks and Data Exploration
For our machine learning tasks, we’ll perform node classification on Cora and PascalVOC-
SP datasets, along with graph classification on IMDB and Enzymes datasets. The details
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on these datasets can be found in Section 3: Results. While Cora, IMDB, and Enzymes are
conventional datasets, PascalVOC-SP is part of the Long Range Graph Benchmark datasets,
designed to assess models’ capabilities in handling long-range interactions. Each dataset
presents distinct challenges with its varying sizes and structures, and that combined with
the diverse mix of machine learning tasks like node and graph classification and dataset
types like regular and long-range will provide us with an ideal scenario to evaluate our
models. By exploring these instances, we will assess whether our models can overcome
the oversmoothing and oversquashing issues, while we shed light on their strengths and
limitations.

2 Methods
In order to understand baseline models in greater detail, we will explore its most popular
architecture: GCN. We will also compare it to the transformer mode GraphGPS. For both,
we will speak on its strength and limitations.

2.1 GCN
GCN utilizes the message-passing framework to update node representations based on the
information gathered from its adjacent nodes. Its framework includes these components:

• Node features: Each node has a feature vector that includes attributes (height, age).
• Input layer: The input nodes each contain feature vectors.
• Convolution: The convolutional layers perform message passing on the graph’s

adjacency matrix and the node features. In these convolutions, information from
neighboring nodes gets incorporated via aggregate functions such as mean or sum.
By using aggregate functions, each node is able to capture information from all its
neighboring nodes.

• Hidden layers: There can be multiple GCN layers to capture deeper and more ab-
stract representations of nodes. Each subsequent layer’s input will be the output of
its previous layer.

• Activation Functions: GCN can have activation functions after each hidden layers.
It’s task is to introduce non-linearities to the network, allowing the model to learn
complexities. Common activation functions include:

– Rectified Linear Unit (ReLU): This function is most popular among activation
functions. For any input x , ReLU returns x if x > 0 and 0 otherwise. Mathe-
matically, it’s represented as:

f (x) =max(0, x)

– Sigmoid: This function is commonly used for binary classification, where the
output can be viewed as a probability. It squashes values between 0 and 1.
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Figure 2: GCN architecture (Kipf and Welling 2017)

Mathematically, it can be represented as:

f (x) =
1

1+ e−x

• Output: The final output of GCN can be used for specific tasks like node and graph
classification.

Figure 2 (Kipf and Welling 2017) showcases the GCN’s architecture. Here, we can see the
input, hidden layers, and the output. The hidden layers make use of the ReLU activation
function.
GCN works well on shallow graph structures, where any given node contains information
from its preceding layers, However, there’s a downside to this architecture: oversquashing.
Since a given node receives messages from all its previous nodes, it leads to information
overload. This will force the information to be compressed, thus leading to oversquashing.
Such problem may hinder the model from capturing long-range interactions effectively.

2.2 GraphGPS
On the other hand, GraphGPS (short-hand form for general, powerful, and scalable) adopts
a transformer-based architecture that is capable of capturing global dependencies and long-
range interactions by employing self-attention mechanisms. Graph transformers are known
for their ability to capture intricate relationships and structural information in graphs.
GraphGPS uses this 3-part recipe:

• Positional/structural encoding: This “ingredient” contains local encodings to cap-
ture immediate neighborhood information, global encodings to gain a broader con-
text on nodes, and relative encodings to capture relationships between nodes.

• Local message-passing mechanism: This another “ingredient” exchanges informa-
tion between nodes.

• Global attention mechanism: This last “ingredient” enables the information ex-
change and node-to-node interactions across the whole graph.
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Figure 3: GraphGPS Architecture (Rampášek et al. 2022)

By utilizing these three ingredients for its recipe, GraphGPS is able to perform well on long-
range interactions. Its architecture is visualized in Figure 3 (Rampášek et al. 2022). It
gives an example of positional (PE) and structural encodings (SE) and analyzes how such
encodings help express information in the model.
GraphGPS’s self-attention mechanism can incorporate information from distant nodes, that
is irrespective of distance. This concept helps mitigate oversmoothing and oversquashing
issues prevalent in traditional GNNs.

3 Results
We will first provide some details on our datasets, and compare the models’ performance
on each of these datasets.

3.1 Datasets
Here are the specifics of our four datasets. Table 1 shows these statistics for an easy com-
parison. Table 2 provides specifics on the first graph of each dataset.
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Table 1: Dataset Statistics
Datasets # of Graphs # of Features # of Classes ML Task
Cora 1 1433 7 Node classification
IMDB 1000 0 2 Graph classification
Enzymes 600 3 6 Graph classification
PascalVOC-SP 8498 14 21 Node classification

Table 2: Graph 1 Statistics
Datasets # of Nodes # of Edges Avg. Node Degree Has Isolated Nodes Has Self-Loops
Cora 2708 10556 3.9 False False
IMDB 20 146 7.3 False False
Enzymes 37 168 4.54 False False
PascalVOC-SP 460 2632 5.72 False False

3.1.1 Cora

Cora provides insight into the academic citation network. This dataset consists of 2708
scientific publications classified into one of seven classes. The text content of the documents
is described as a binary word vector 0/1, where 0 refers to the absence of and 1 refers to
the presence of a corresponding word from the dictionary. Its dictionary also contains 1433
unique words used in the research papers. For instance, if a particular word from this
dictionary is present on a particular document, then that document would get assigned
a value of 1 for that particular word. This dataset is well-suited to test our graph-based
architectures because of its natural graph structure and real-world relevance.

3.1.2 IMDB

IMDB is a graph dataset on movies where nodes represent movies and edges represent the
relationships between them (shared actors, directors). It contains 1000 graphs and each
graph is a movie labeled with a genre. We are tasked with predicting the genre of the
movies, which is a graph classification task.

3.1.3 Enzymes

Enzymes contains graphs where nodes represent amino acids and edges represent the spa-
tial relationships between them. It contains 600 graphs and each graph is a protein. We are
tasked with predicting the enzyme class for each protein, which is also a graph classification
task.

3.1.4 PascalVOC-SP

PascalVOC-SP is part of the long-range graph benchmark datasets (Dwivedi et al. 2022) and
it contains graphs where nodes represent image patches and edges represent the spatial
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relationships between them. It contains 8498 graphs and each graph is an image. This
dataset can be used for either node and graph classification task, and in this paper we will
focus on node classification to predict labels for these image patches. This dataset will be
used to evaluate models’ abilities to handle long-range interactions.

3.2 Models Performance
Table 3 highlights our models’ performances. Upon comparing the results, it seems that
our model might have overfitted the training set. GCN worked very well on Cora, since
it’s a short-range dataset but could not perform well on Enzymes, that has longer-range
interactions. GIN also worked great on Cora but did not perform very well on Enzymes.
GATv2 compared similarly to GIN. GraphGPS performed best on the long-range benchmark
dataset, compared to other models. This proves that GraphGPS is useful for detecting long-
range interactions. It, however, performed similarly to other models for the rest of the
datasets. This tells us that this complex model might not be needed for most datasets, only
the ones that contain long-range interactions.

Table 3: Model Accuracy

Datasets GCN GIN GATv2 GraphGPS
Train Test Train Test Train Test Train Test

Cora 96.43 76.30 99.29 64.70 95.99 73.70 91.43 61.70
IMDB 60.71 56.00 60.94 58.67 50.12 49.33 72.31 70.15
Enzymes 29.56 30.00 35.33 36.00 38.44 36.00 76.82 73.33
PascalVOC-SP 69.95 69.50 69.95 69.50 66.56 66.02 74.12 73.95

4 Implentation Details
All four datasets and the three baseline models were loaded from Pytorch Geometric (Fey
and Lenssen 2019). GraphGPS is derived from a paper and its respective GitHub repo
(Rampášek et al. 2022). The datasets were split into test and train sets, as shown in Table
2. The datasets were pre-processed. For instance, since Cora did not contain any node
features, 1 was used as its replacement. We also normalized the features so our models can
converge faster during training and for stability so the model will not allow certain values
to dominate too much. We used accuracy as a metric to evaluate our model.
Details of the implementation:

• Layers #: 2
• Weight decay: 0.0005
• Optimizer: Adam
• Learning rate: 0.001
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• Epochs #: 1000

For our inner layers of the model, we used the ReLU activation function to add non-linearity.
For the GATv2 model, we used 8 heads to incorporate self-attention mechanisms. We used
soft-max for each of our model’s output layers. We also used a batch size of 64 for each
model.

5 Conclusion
In this study, we were able to explore different ranges of datasets on baseline GNN and a
transformer-based model. We saw that the baseline model works alright on datasets with
short-range interactions and GraphGPSworks well on datasets with long-range interactions.
In subsequent studies, we will use GridSearch CV to fine-tune our hyperparameters and
choose the one that performs well on that model and that dataset. We will also explore the
Enzymes dataset further and look into ways we can surpass current performance.
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